
An effective reinforcement learning with automatic construction of basis functions
and sequential approximation

Nobuhito Nanjoh, Takeshi Mori Shin Ishii
Guraduate School of Information Science Guraduate School of Informatics
Nara Institute of Science and Technology Kyoto University

8916-5, Takayama, Ikoma, Nara, 630-0192, Japan Gokasho, Uji, Kyoto, 611-0011, Japan

Abstract
In reinforcement learning, a large state space makes the

value function estimation infeasible, and hence it is of-
ten approximated as a linear combination of basis func-
tions whose linear coefficients constitute the parameter.
However, the basis function construction needs some prior
knowledge and is often troublesome. To overcome this dif-
ficulty, Keller et al. proposed an automatic basis function
construction technique [2], but it may cause serious compu-
tational cost. We propose a novel approach to this context,
where the computational cost can be drastically reduced
from that of the existing method, due to our sequential ap-
proximation.

1 Introduction

Reinforcement learning (RL) is a machine learning
method through interactions with environments to maxi-
mize the long-term reward accumulation (return). In usual
RL schemes, it is important to estimate the value func-
tion which predicts the return starting form each state. In
many realistic RL problems, however, a large state space
makes the value function estimation in its original function
space infeasible, and hence, the value function approxima-
tion using a parametric linear model comes to be impor-
tant; the value function is represented as a linear combi-
nation of basis functions whose linear coefficients consti-
tute the parameter. While the parameter is obtained by the
conventional RL methods based on sample data, the ba-
sis functions must be determined by a designer at hand in
advance, but the determination is very difficult due to the
small amount of available prior knowledge. A poor setting
of basis functions may increase the potential error of ap-
proximating the value function, and a large approximation
error makes the policy’s control fail.

One possible idea to deal with this problem is to con-
struct the basis functions automatically based on the avail-
able data in an online manner. Keller et al. proposed an au-
tomatic basis function construction technique [2], in which
appropriate basis functions were generated based on tem-

poral difference (TD) error. However, this approach had
some difficulties. First, the basis functions were generated
in each time step, and then, all the basis functions, whose
number could be huge, were used to approximate the value
function by means of the least-squares optimization. This
may cause serious computational cost, as the number of
bases increases. Second, the value function approximation
can be unstable due to the singularity in the least squares
solution, especially as the number of highly correlated ba-
sis functions increases.

To overcome these problems, in this study, we propose a
novel approach to the automatic construction of basis func-
tions, where the number of basis functions and the com-
putational cost can be drastically reduced from those of
the existing method. According to our method, the basis
functions, are constructed in to approximate the TD error
at each time step instead of the value function, and the
learned parameters are fixed in the subsequent optimiza-
tions. In other words, our method decomposes whole the
approximation problem in the Markov decision processes
(MDPs) into small approximation problems which are eas-
ily to be solved with a small number of basis functions, so
that the parameter is optimized within each sub-problem.
This method has some theoretical foundations, given by
Bertsekas and Castanon [3], which showed that the se-
quential calculation of analytic approximation of the TD
error with appropriate basis functions can geometrically re-
duce the approximation error along the whole time-series.
Computer simulation shows our method could drastically
reduce not only the number of basis functions but also
the computational time in comparison to the Keller et al.’s
method [2].

2 MDPs and the value function approxima-
tion

We consider finite MDPs, which is composed of the dis-
crete time t, a set of states S, a set of actions A, a set of
transition probabilities P , and a scalar reward r ∈ R. At
time t, the agent selects an action at ∈ A according to a

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 662

stationary policy π at a state st ∈ S, and then it moves to
the next state st+1 ∈ S and simultaneously recieves the re-
ward rt+1. The objective is to find a policy that maximizes
the value function:

V π(s) = E

[∞∑
t=0

γtrt+1|s0 = s

]
(1)

where γ ∈ [0, 1) is a discount factor.
One of the approaches of searching for the optimal pol-

icy is policy iteration [1]. The policy iteration is con-
structed of two steps, i.e., the policy evaluation step and
the policy improvement step. In the policy evaluation step,
the value function V π for the current policy π is calculated
or approximated. In the policy improvement step, the pol-
icy π is improved by using the learned value function. In
this article, we focus on the policy evaluation step. The
Bellman equation under π is defined as

V π(s) = Eπ [rt+1 + γV π(st+1)|st = s] . (2)

For the sake of later convenience, we introduce the matrix
notations; the value function vector V π ∈ R|S| whose i-th
element is the value at the i-th state in S, the state transition
matrix P ∈ R|S|×|S| whose i,j-th element is the state tran-
sition probability under policy π from the i-th state to the
j-th state in S, and the reward vector r ∈ R|S| whose i-th
element is the expected reward with respect to the next state
conditioned on the i-th state and policy π. Then, the Bell-
man equation Eq.(2) is represented as V π = r + γPV π .

In the dynamic programming context, the policy evalu-
ation in average operates successive approximations of the
value function V using Bellman operator T (·):

V k+1 = T (V k) ≡ r + γPV k, (3)

where k denotes an iteration step and V k converges to
Vπ in the limit of k → ∞ [1]. In usual RL set-
tings, the vector r and the matrix P are unknown, so
the value function is estimated by using sample trajectory,
〈s0, r1, s1, r2, . . . , st, rt+1, . . . 〉.

In realistic RL problems, however, the state space is
large, and the value function estimation is very difficult.
Then the value function is often approximated by using
a paramatric linear model, that is, represented as a lin-
ear combination of basis function whose linear coefficients
constitute the parameter:

V (s) ≈
M∑

m=1

φm(s)′θm = φ(s)′θ, (4)

where (’) is the transpose, and the basis function vector
φ(s) and the parameter θ are both M -dimensional vec-
tors. Note that the designer of the system must prepare

the basis functions at hand. The parameter θ is tuned in
the policy evaluation step by using the sample trajectory.
One of the learning methods is least-squares TD learning
[4], which is the closed-form estimation method for the
linearly-approximated value function.

3 Previous method for automatic basis func-
tion construction and aggregation theory

In usual, the basis function construction requires de-
signer’s trial and error. The poor setting of basis functions
may increase the approximation error of the value func-
tion, and a large approximation error makes the policy’s
update fail. One possible idea to deal with this problem is
to construct the basis functions automatically based on the
available data in an online manner.

Keller et al. [2] proposed an automatic basis function
construction technique, in which appropriate basis func-
tions were generated based on the aggregation theory, pro-
posed formerly by Bertsekas and Castanon [3]. According
to this theory, automatically produced aggregated states are
used to speed up the value iteration in dynamic program-
ming, even if the original operations of the Bellman op-
erater (Eq.(3)) are very slow. In section 5, we show that
our proposal method is also based on this theory, actually
a more appropriate application of this theory rather than
Keller et al.’s. In this theory, the Bellman operator (Eq.(3))
is replaced by aggregation iterations of the form:

V k+1 = V k + Ψy, (5)

where Ψ ∈ {0, 1}|S|×M is such an aggregation matrix that
Ψij = 1 if state i is assigned to group j or 0 otherwise.
The grouping of the states is determined by the ranking of
the Bellman residual: T (V k) − V k. y is the parameter
vector corresponding to Ψ, which is derived by analytical
calculation. Ψy is the orthogonal projected vector of the
Bellman residual onto the subspace spanned by sparse ma-
trix Ψ. By using the Bellman operator T ,

T (V k+1) = T (V k) + γPΨy, (6)

is obtained, and by using the definition of orthogonal pro-
jection: Π = Ψ(Ψ′Ψ)−1Ψ′, the following holds [3]:

T (V k+1) − V k+1 = g1 + g2, (7)

where

g1 = (I − Π)
(
T (V k) − V k

)
,

g2 = γ(I − Π)PΨy.

Based on the above ranking scheme of the Bellman residual
T (V k) − V k, the maximum norm of the first approxima-
tion error g1 can be minimized under a restricted number

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 663

of groups M . Moreover, it is know experimentally that g2

often decreases as g1 decreases [3]. So we may focus only
on the minimization of g1.

In the Keller et al.’s method, by applying this theory to
an RL context, the value function is updated as

Vk+1 = Φkθk + Ψθnew

= [Φk Ψ]
[

θk

θnew

]
= Φk+1θk+1, (8)

where Φk ∈ {0, 1}|S|×kM is the basis function matrix:
Φk = [φk(1),φk(2), . . . , φk(|S|)]′, φk(s) ∈ {0, 1}kM is
a kM -dimensional binary vector corresponding to a state s,
and M is the number of basis functions produced in each
step. In this method, the basis functions are constructed it-
eratively based on the TD error (the Bellman residual for a
sampled state), and the parameters are evaluated by least-
squares TD learning (LSTD) [4]. By using a sample tra-
jectory, the parameter vector θk+1 is optimized so as to
minimize the cost function:

JLSTD(θk+1) = 1
2t

∑t−1
i=0(ri+1 − γV k(si+1)
−φk+1(si)′θk+1)2, (9)

where t is the current time step. Then, in each iteration
step k, kM -dimensional vector θk is estimated by the least-
squares optimization.

Because the number of the parameters increases by
M after each iteration, the computation (in the order of
O((kM)3) due to the inverse calculation of the design ma-
trix) can be intractable. Furthermore, the value function
approximation can be unstable due to the singularity of
the design matrix as the number of highly correlated ba-
sis functions increases.

4 Sequential approximation method for au-
tomatic basis function construction

To overcome these diffculties, we propose a novel ap-
proach for automatic basis function construction, where the
computational cost is only of O(M3), which is indepen-
dent of k, and stable learning can be achieved by avoid-
ing the singularity. While in the previous approach shown
above, the value function is approximated by all parame-
ters, we consider the approximation of the TD error instead
of the value function with restricted parameters θnew, and
learned parameters θk being fixed after each optimization
and embedded in V k. To this end, we adopt least-squares
policy evaluation learning (LSPE) [5] instead of LSTD. In
this method, the TD error instead of the value function is
approximated by least-squares optimization, so as to have
a form:

Vk+1 = Vk + Ψθnew. (10)

Note that only M -dimensional vector θnew is learned, and
the others are fixed. The cost function is given by

J(θnew) = 1
2t

∑t−1
i=0(ri+1 + γV k(si+1) − V k(si)

−ψ(si)′θnew)2, (11)

where ψ(si) ∈ {0, 1}M is a newly produced basis func-
tion and is the transpose of the row vector in Ψ, evaluated
at the state si. TD error: ri+1 +γV k(si+1)−V k(si) is the
target of ψ(si)′θnew in this regression problem. In the min-
imization of this objective function with respect to θnew,
the least-squares solution is given as

θnew = B−1c, (12)

where

B =
1
t

t−1∑
i=0

ψ(si)ψ(si)′,

c =
1
t

t−1∑
i=0

ψ(si)
(
ri+1 + γV k(si + 1) − V k(si)

)′
.

Then, the TD error can be successively approximated by
sequentially constructed basis functions. Note that the
newly produced basis functions are only used for each se-
quential approximation. Then, the computational cost is
of O(M3), which is much smaller than O((kM)3) of the
Keller et al.’s method. Moreover, it can be seen that our
method is the straightfoward application of the Bertsekas
and Castanon’s aggregation theory shown in Eq.(5)-(7),
since the TD error is orthogonally projected onto the space
Ψ. The algorithm is depicted in Fig 1.

Figure 1: single iteration step

input
ht = 〈s0, r1, . . . , st, rt〉 : a sample trajectory until t
M : the number of basis functions
Vk : estimated value function

For i = 1:t-1
ei ← ri+1 + γVk(si+1) − Vk(si)

End
Ψ ← GenerateBasis({e},M)
θnew ← LSPE (ht,Vk,Ψ)
Vk+1 ← Vk + Ψθnew

return Vk+1

The process of the adaptive basis function construction
is described by GenerateBasis. This function generates
basis functions according to the TD errors e. The param-
eter θnew is estimated by LSPE (Eq.(12)), and then the
value function is updated. Since the previous parameters
are fixed, serious instability due to the singularity can be
avoided in our method.

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 664

5 Experimental results

To verify the performance of our method, we evaluate
the maximum norm1 between the true value function and
the estimated value functions by several methods in sim-
ulation experiments. Since the maximum norm is associ-
ated with the worst case policy improvement, this measure
is important for the convergence property of RL [1]. We
compared our method with the following three methods:
(a). LSPE with fixed basis functions, which is a usual setting of

conventional RL methods,

(b). LEPE with randomly generated basis functions,

(c). LSTD with adaptive construction of basis functions (Keller
et al.’s method).

By comparing with (a), we can show the effective-
ness of sequential construction of basis functions. By
comparing with (b), we can show the effectiveness of
the adaptive constructions based on TD error. By com-
paring with (c), we can show the effectiveness of our
method compared with the Keller et al.’s method. We as-
sume that the number of states is 100, the discount fac-
tor γ is 0.97, the number of basis functions (M) is 2,
and the transitional matrix under the fixed policy π is as
P = Z (0.03 × Prand + (1 − 0.03) × I) , where the com-
ponents of Prand are drawn from the uniform distribution
in (0, 1]|S|×|S|, I is a unit matrix, and Z is a normal-
ization term. Then the true value function is given by
Vtrue = (I − γP)−1

r.Samples are drawn from the tran-
sition matrix P step by step starting from an initial state
s0. We generated new basis functions and the estimated
value function every 10 sample generations. Fig 2 shows
the performance comparison where the horizontal axis is
the number of generated samples. The performances were
averaged over 100 independent runs.

0 400 800 1200 1600 2000
0.8

1

1.4

1.8

2.2

2.6

LSPE , fixed

LSPE , random

LSTD , adaptive

LSPE , adaptive

∞

−
k

tr
u
e
V

V

time steps

Th
e

p
er

fo
rm

an
ce

Figure 2: The performance comparisons

With setting (a), the performance saturated immediately
due to the restricted expression of fixed basis functions.
With setting (b), the performance gradually increased, ac-
tually much better than (a) every time step. The Keller et

1For an N -dimensional vector x = [x1, x2, . . . , xN]′, the maximum
norm is difined as ‖x‖∞ ≡ max{|x1|, |x2|, . . . , |xN |}.

al.’s method (setting (c)) drastically improved the perfor-
mance, but it showed substantial instability behavior due
to simultaneous optimization of all the parameters. In the
following learning phase, the design matrix was always
singlar, so we had to use the singular value decomposition.
Moreover, the computational cost of O((kM)3) was a haz-
ard for examination of longer time-steps behaviors. In our
method, the performance was improved similar to (c), but
did not show any instability in contrast to (c). Furthermore,
since the computational cost is of only O(M3), the learn-
ing can be continued for any period in on-line manner; this
is an important feature for scaling-up the application.

6 Conclusion and future works

We proposed a novel scheme for automatic construction
of basis functions, without huge computational cost. In this
method, the value function was estimated by sequential ap-
proximation of the TD errors with adaptive basis functions.
In our experiments, we showed that the performance of our
method was much better than previous methods in spite of
small computational cost.

Although our method was formalized by using aggre-
gated discrete states, many realistic problems have continu-
ous state space. We need some modifications of our method
to be applicable to continuous-state space problems. One
possibility is to extend the value function approximator to
that with continuous-state basis functions such as the radial
basis functions, but this extension hinder direct application
of the aggregation theory, and the performance assureness
can be abused. So theoretical foundations are desired in
continuous-state settings. Furthermore, the combination
of the automatic dimensionality reduction method, such as
neighborhood component annalysis, explored by Keller et
al. [2], could be interesting, but this orientation does not
have sufficient theoretical backgrounds yet.

References

[1] Bertsekas, D. and Tsitseklis, J. (1996), Neuro-Dynamic Pro-
gramming, ISBN 1-8865 29-10-8

[2] Keller, P., Mannor, S., and Precup, D. (2006), Automatic
Basis Function Construction for Approximate Dynamic Pro-
gramming and Reinforcement Learning. International Con-
ference on Machine Learning

[3] Bertsekas, D. and Castanon, D. (1989), Adaptive aggregation
methods for infinite horizon dynamic programming. IEEE
Transactions of Automatic Control, 34,589-598

[4] Bradtke, S. and Barto, A. (1996), Linear Least-Squares Algo-
rithms for Temporal Difference Learning. Machine Learning,
22, 33-57

[5] Bertsekas, D. and Yu, H. (2006), Convergence results for
some temporal diffrence methods based on least squares.
(Technical Report LIDS-2697).

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th ’08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

©ISAROB 2008 665

